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Abstract-Turbulent heat transfer in a two-dimensional serpentine channel with a series of right-angle 
turns was numerically studied. The standard k--E model was incorporated for turbulence closure. The 
governing equations were solved by the finite volume technique. The numerical model was validated by 
comparing the predicted Nusselt number distributions with the experimental data obtained by the naph- 
thalene sublimation technique. The comparison of numerically predicted values of average Nusselt number 
with the experimental data was fair with a maximum error of 17.4%. Calculations were made for a wide 
range of geometric and flow parameters (Re = 15 000-60 000). Consideration was given to high (Pr = 7.0) 
and low (PF = 0.7) Prandtl number fluids. Correlations for average Nusselt number and frictional factors 
were developed using the method of least squares. Heat transfer was found to be more sensitive to the 
Reynolds number in a high Prandtl number fluid than for a low Prandtl number fluid. The maximum 
values of heat transfer enhancement and friction factor were found in channels with a relatively small 

undulation height (1-1.5 times the channel width). 

INTRODUCTION ment is accompanied by an increase in pressure drop. 

Several techniques have been developed to augment 
single phase convective heat transfer in channels. One 
technique is to use a serpentine channel [Fig. l(a)] 
that increases the heat transfer area in a given volume 
and enhances the heat transfer due to flow mixing and 

periodic interruption of thermal boundary layers. This 
technique has been applied to compact heat 
exchangers and thermal regenerators. In addition, 
labyrinth seals in turbomachines resemble the present 
geometry. 

Industrial applications deploy many geometrically 
identical moduleI;. In such geometries, the flow and 
temperature fields repeat periodically from module to 
module after a certain entrance length. Consequently, 
since most modules are expected to be in the period- 
ically fully developed region, the entrance effects are 
considered relatively small. It is possible to save com- 
putational effort by analyzing flow and heat transfer 
characteristics in one periodically fully developed 
module rather than in a whole channel [Fig. 1 (b)]. In 
addition, values of heat transfer coefficient and fluid 
friction factor in the periodically fully developed flow 
region are the lower bound forming a basis for design. 

The flow in a periodically bent channel shows com- 
plex flow patterns such as separation, recirculation, 
reattachment, de:Rection, and impingement. The heat 
transfer augmentation can be explained in terms of 
these flow mechanisms. The heat transfer enhance- 
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A heat transfer enhancement technique that requires 
an unjustifiably high pressure drop is normally not 
preferred in practice. However, a high pressure drop 
is beneficial and desired in labyrinth seals. 

The detailed heat transfer distribution will help an 
engineer understand the heat transfer characteristics 
in a serpentine channel. An experimentally validated 
numerical model is an economic tool for design and 
optimization of serpentine channels. 

The first numerical solution procedure for period- 
ically fully developed flow and heat transfer was 
shown by Patankar et al. [l]. Faas and McEligot [2] 
numerically studied flow in a periodically corrugated 
wall channel in the laminar flow regime. Amano [3] 
and Amano et al. [4] numerically studied heat transfer 
and fluid flow in similar geometries in laminar and 
turbulent regimes and compared the results with 
experimental data. However, the flows in these chan- 
nels did not have a 180” direction change as shown in 
Fig. 1 (a), but maintained the same flow direction after 
two right-angle turns. Chang et al. [5], Choi et al. [6] 
and Iacovides et al. [7] numerically investigated 
curved U-bends of square cross-section in a turbulent 
flow regime. Conjugate effects in a channel with one 
180” sharp turn was numerically studied by Choi et 
al. [8]. The identical channel in the present study was 
numerically investigated in a laminar flow regime by 
Choi and Anand [9]. 

The objectives of the present investigation are to 
establish optimum geometrical and flow parameters 
for turbulent heat transfer in serpentine channels 
under periodically fully developed conditions. Para- 
metric studies were carried out using an experi- 
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NOMENCLATURE 

c, specific heat of a working fluid at Q tot total heat transferred through the wall 
constant pressure ,, 

4W heat flux at the wall to a working fluid 

;” 

hydraulic diameter, 2H R distance between inner corners of the 
Fanning friction factor for a straight channel, Fig. 1 (b) 
channel Re Reynolds number, ptiD,/p 

f average Fanning friction factor, RR R ratio (R/H) 
equation (4) s coordinate along the wall surface, 

G amplitude of the channel, Fig. 1 (b) Figs. 2 and 3 
GR G ratio, G/H s UP upper wall surface area [AUK in Fig. 
H channel width, Fig. 1 (b) 1 @)I 
h convective heat transfer coefficient, 

equation (10) 

&A4 average convective heat transfer 
coefficient by log-mean temperature 
difference, equation (14) 

K thermal conductivity of a working 
fluid 

L half module length, Fig. 1 (b) 

Lfl flow passage length of half module, 
AZJK in Fig. 1 (b) 

?i? total mass flow rate, piiH 
Nu Nusselt number, hD,/K 

Nu,,, regionally averaged Nusselt number 
by an area integration in Fig. 2 

j&Z Nusselt number in a straight channel 
Nu total average Nusselt number - 
Nn, average Nusselt number for the lower 

wall 

N% average Nusselt number for the upper 
wall 

(N&M average Nusselt number by log- 
mean temperature difference 

P pressure 

P local variation of pressure, equation 

(1) 
Pr Prandtl number, C&K 

T temperature 

Tll bulk temperature, equations (7) and 

(8) 
TW wall temperature 

n, 0 velocities in x- and Y-directions 
a average u velocity in the channel 

X>Y horizontal and vertical coordinates to 
the channel. 

Greek symbols 

P constant representing the overall 
pressure gradient, equation (1) 

(WLM log-mean temperature difference, 
equation (15) 

p dynamic viscosity 

P density. 

Subscripts 
b bulk 
fl flow passage 
1 lower wall 
LM log-mean difference 
0 straight channel 
U upper wall 
W wall. 

mentally validated numerical model. The heat transfer 
enhancement and the friction factor increase were 
numerically predicted in various geometries. A two- 
dimensional steady turbulent flow was considered for 
the current study. 

NUMERICAL MODEL AND SOLUTION 
PROCEDURE 

Figure l(b) shows one module (ABEF) of the 
geometry considered in computation. To save com- 
putational effort Choi and Anand [9] used only a half 
module such as (ABCD). They observed that the flows 
in the half modules ABCD and DCEF hold inverted 
symmetric relations. Kelkar and Patankar [lo] explained 
in detail this inverted symmetry boundary condition. 
Since the half module for the experimental study was 
defined differently [ 11, 121, one complete module was 
considered for easier comparison with the exper- 

imental data. However, all parametric numerical runs 
were made with one half modules. Two geometric 
parameters characterize the present serpentine chan- 
nel. One is the ratio (GR) of the amplitude G to the 
channel width H. The other is the ratio (RR) of the 
distance between inner corners R and the channel 
width H [Fig. 1 (b)]. For example, the channel with a 
large value of GR corresponds to the high amplitude 
channel while the channel with a large value of RR 
corresponds to the long wave length channel. A low 
value of GR (GR = 0.5) corresponds to a straight 
channel with staggered blockages as shown in Fig. 
l(c), and a very low value of RR (RR = 0.1) cor- 
responds to a straight channel with staggered fins as 
shown in Fig. 1 (d). 

The standard k-.z model (Launder and Spalding 
[ 131) which is a typical two-equation turbulence model 
was adopted in this study. There are two versions of 
the k-8 turbulence model, viz. the standard model 
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(b) 
Two common thermal boundary conditions, those 

of uniform heat flux and uniform wall temperature 
boundary conditions were considered in the numerical 
predictions. Patankar et al. [l] divided the real tem- 
perature in the uniform heat flux boundary condition, 
into two components. This is similar to what was done 
in the flow field. However, in this study, T is the real 
temperature in both cases. 

GR=0.5 and RR=1 GR=0.5 and RR=O.l 

(4 (d) 

Fig. 1. !Serpentine channel models. Uniform heat flux boundary condition 

with the wall-function method and the low-Reynolds- 
number version. Ciofalo and Collins [14] reported 
that the low-Reynolds-number model needs an 
extremely fine mesh near the wall and, moreover, the 
heat transfer prediction is not reliable in the re- 
attachment region. Therefore, the standard k--E tur- 
bulence model with the wall-function method was 
chosen to study the flow and the heat transfer in this 
investigation. 

Patankar et al. I[11 explained that the pressure p can 
be decomposed into two terms for the periodically 
fully developed flow conditions : 

pG;y) = -Px+Bky) (1) 

where /I is a constant representing the total pressure 
gradient applied to the flow, and @(x, y) is the local 
variation of pressure. The governing equations for the 
periodically fully developed flow and temperature and 
their periodic relations in a half module can be written 
as 

The 4 represents generalized variables such as u, v, T, k 
and E. I4 and S, stand for the appropriate diffusion 
coefficient and the source term, respectively. The 

details are tabulated in Table 1. The Reynolds number 
(Re) was defined as 

P~D,IP (3) 

where ~7 is the average u velocity at the inlet or exit of 
the module, and DH is the hydraulic diameter (2H). 

The average Fanning friction factor was defined as 

where L, is the flow passage length along the wall 
in a half module [AZJK in Fig. l(b)]. L/La may be 
considered a conversion factor by which it is possible 
to compare the friction factor/pressure drop in a ser- 
pentine channel module with one in a straight channel 
with the same flow passage length under the fully 
developed condition. 

Using the periodic and the inverted symmetric nature 
of the temperature field in the half module, the tem- 
peratures at the left and right boundaries have the 
following relation : 

T(O,y) = T(L,H+G-y)- g (5) 
P 

where Qt,, = q:S,,, and riz = piiH. The qk is the heat 
flux from the wall to the fluid and is constant in the 
uniform heat flux boundary condition. The riz is the 
total mass flow rate through the module. The S,,, 
indicates total surface area which transfers the con- 
stant heat flux q; into a working fluid. It should be 
noticed in equation (5) that the temperatures are not 
specified on the boundaries but their periodic relation 
is indicated. By this reason only temperature differ- 
ences are meaningful. 

Uniform wall temperature boundary condition 
In the thermally periodically fully developed region, 

the thermal field which is defined by (T- T,,J/ 
( Tb- TJ repeats identically from module to module, 
where T,,, and T, represent the wall temperature and 
the bulk temperature, respectively. The left and right 
boundaries have the following relation : 

W4 Y) - Tw T(L,H+G-y)-T, 
Tb(0)-T, = Tb (L) - T, 

(6) 

where the inverted symmetry boundary condition is 
applied. In addition, Tb(0) can be given any arbitrary 
value that is different from T,. Kelkar and Patankar 
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Table 1. Summary of governing equations 

Equation 

Continuity 
x momentum 
y momentum 
Thermal energy 
Turbulence energy 
Dissipation rate 

c, = 0.09, c, = 1.44, 

kZ 
0, = 

(C, -C,)cy 

[lo] described the computational details. The bulk 
temperature ( Tb) is defined as 

T&) = lulTdy/ IuI dy 
s s 

(7) 

on AI, JK, MN and OC surfaces, and 

T,,(x) = lvlTdy/ 
s s 

I0ld.r (8) 

on ZJ and NO surfaces in Fig. 1 (b). The integrations 
are carried out over the cross-section of the channel. 
The absolute values of the velocities are used to 
wunt for recirculating flows. The bulk temperature 
definition is also applicable in the uniform heat flux 
boundary condition. 

Nusselt number 
The local Nusselt number is defined as 

Nu = q 

where K is the thermal conductivity of a working fluid 
and h is defined as 

4’; 
h = (Tw- Tb) (10) 

By substituting equation (10) into equation (9), Nu 
can be expressed as follows : 

q%& 
N” = K(T,- Tb)’ (11) 

For the uniform heat flux boundary condition q: is 
constant while it becomes a function of the location 
and a part of solution for the uniform temperature 
boundary condition. The wall temperature T, is a 
constant value for the uniform wall temperature 

C, = 1.92, dir = 1.0, 

and Pr, = 0.9. 

boundary condition while it becomes a function of the 
location and a part of solution for the uniform heat 
flux boundary condition. 

The average Nusselt number for the upper wall 
(Nu,) was defined as 

Nu.=& NudS 
UP s 

where S,, is the upper wall surface area [AIJK in Fig. 
l(b)]. In the same way, the average Nusselt number 
for the lower wall (Nu,) was defined with the lower 
wall surface area [MNOC in Fig. l(b)]. Since the 
upper wall has the same surface area as the lower - 
wall, the total average Nusselt number (Nu) is the 
arithmetic mean of the two Nusselt numbers. 

For the uniform wall temperature boundary 
condition, one more definition of the average Nusselt 
number is commonly used. The average Nusselt num- 
ber based on the log-mean temperature difference is 
defined as 

(K4)LM = y. (13) 

The average convective heat transfer coefficient (&,,) 
based on the log-mean temperature difference in equa- 
tion (13) is defined as 

h-,, = gp 

LM 
(14) 

where S,,, is the total surface area [AIJK and MNOC 
in Fig. l(b)]. The log-mean temperature difference 
@“hi,, in equation (13) is defined as 

(Tw - T,(O)) - Vw - T&l) 
(AT)LM = h((T,-T,,(O))/(T,-T,(L)))’ (“) 

The Qtot in equation (14) was defined as 
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Qtot = s &dS (16) 

where the integration is carried out over the top and 
bottom surfaces [/lZJK and MNOC in Fig. 1 (b)] and 
qk is the heat flux on the wall. The difference between 
the total average Nusselt number (Nu) and the average 
Nusselt number based on log-mean temperature - 
difference (Nu)rM was negligible in the present work 

]121. 

Independent parameters 
The Prandtl number (Pr), the channel geometry, 

and the Reynolds number (Re) were the independent 
parameters that influenced heat transfer charac- 
teristics in the present channels. Air and water at room 
temperature were considered as working fluids and 
their Prandtl numbers are 0.7 and 7.0, respectively. 
Two geometric parameters (GR and RR) were dis- 
cussed earlier. The range of Reynolds numbers con- 
sidered in this study was Re = 18 460-60 000. 

Computational details 
A FORTRAN program that utilizes the finite 

volume technique described by Patankar [15] was 
developed to solve the governing equations. The pres- 
sure and velocity fields were linked by the Semi- 
Implicit Method for Pressure-Linked Equations 
Revised (SIMPLER) algorithm. The interaction of 
convection and d:lffusion terms was handled by the 
power law scheme. The resulting set of discretization 
equations was solved by a line-by-line technique which 
uses the tri-diagonal matrix algorithm and the Gauss- 
Siedel iterative method. 

Convergence criteria 
The convergence for the velocity field was declared 

when the total mass residue was less than 1 x lo-’ 
times the total mass and the relative error between 
two successive fl values was less than 1 x 10-j. The 
convergence for the temperature field was declared 
when the sum of the discretization equations residues 
was less than 1 x lo-” times the total heat transfer 
rate across the channel walls. It took approximately 
75 min of CPU time on the Cray Y-MP2/216 super- 
computer to meet these criteria for a reference run 
(l28x80mesh). 

Grid independence 
One complete module with uniform wall tem- 

perature was considered for the grid independence 
study. The grid independence was declared between 
128 x 80 and 160 x 100 uniformly spaced meshes at 
GR = 1.5, RR = I and Re = 100000. The maximum 
velocity and temperature differences between the two 
meshes at the module inlet were 2.25 and 0.46%, 
respectively. The maximum differences occurred in 
the recirculation zone while the differences in other 
regions were negligible [12]. The differences in pres- 
sure drop and average Nusselt number based on the 

Table 2. Comparison of (Nu)~~ in the periodically fully 
developed condition module between the experiment and 

computation 

Re Experiment 

18460 189.6+ 15.0 
32 940 316.5+25.0 

Relative 
Computation error [%] 

161.1 15.0 
261.3 17.4 

log-mean temperature difference were 1.46 and 
0.43%, respectively. Hence, the 128 x 80 mesh was 
selected as a reference mesh size. 

EXPERIMENTAL VALIDATION 

Since the validation and limitations of the present 
numerical model are available in other references [ 11, 
121 along with the experimental results, only major 
points are presented here. For the purpose of vali- 
dation of the numerical model, the average Nusselt 
numbers in the periodically fully developed condition 
were compared with the ones from the naphthalene 
sublimation experiments (Table 2). The numerical 
results at both low (Re = 18 460) and high (Re = 
32 940) Reynolds numbers underpredict the experi- 
mental results. The maximum relative error is 17.4%. 
The relative error is defined by normalizing the differ- 
ence between the experimental and numerical values 
with respect to the experimental value. 

Figure 2 shows a comparison of local Nusselt num- 
ber distributions between the experimental data and 
numerical predictions in the periodically fully 
developed region. The numerical model predicts the 
local Nusselt number distribution well on the plate 
(a,b in Fig. 2) and top (c,d) surfaces while the pre- 
dictions on the front (b,c) and back (d,e) are not 
satisfactory. The discrepancy between the exper- 
imental data and numerical prediction on the front 
surface can be explained from the fact that the stan- 
dard k--E model underpredicts the area of the recir- 
culation zone. For the discrepancy on the back 
surface, it was speculated that the k-6 model cannot 
predict the high turbulence and/or a possible large 
scale motion (e.g. strong small vortex) in the shear 
layer and recirculation zones [l 1, 121. 

Tables 3 and 4 show the comparison of the 
regionally averaged Nusselt numbers by an inte- - 
gration of area in Fig. 2 (Nui,J at Re = 18460 and 
32940, respectively. The integration was done by 
using the trapezoidal rule for both curves (experiment 
and computation). The relative error was defined by 
normalizing the difference between the experimental 
and numerical values with respect to the experimental 
value. The comparison is quite good at the top surface 
(as small as 7.8% error) but not satisfactory at the 
back surface (up to 34.0% error). 

In summary, the numerically predicted average and 
regionally averaged Nusselt numbers agree well with 
the experimental data. However, the agreement of 
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A E. 18,480 
0 E. 32,840 

- N. 18,480 
- N. 32,840 

300 

Nu 

200 

0 1 2 3 4 5 8 7 

s/H 

Fig. 2. Comparison of local Nusselt number distributions between experiments and numerical predictions 
at Pr = 0.7 (GR = I .5 and RR = 1) : (E) experiment, (N) numerical prediction. 

Table 3. Comparison of Nu,., between the experiment and 
the computation at Re = 18 460 

Nu,“, N%t Relative 
Experiment Computation error [%I 

Plate 213.7 183.2 14.3 
Front 253.3 189.4 25.2 
Top 182.2 167.9 7.8 
Back 157.2 110.0 30.0 

predicted local Nusselt number distribution with the 
experimental data is less than satisfactory. Never- 
theless, the focus of this work is to develop cor- 
relations for average Nusselt numbers for serpentine 
channels under periodically fully developed flow con- 
ditions. Accordingly, this degree of agreement can be 
considered fair. 

Table 4. Comparison of Nu,,, between the experiment and 
the computation at Re = 32 940 

G., Nn,,, Relative 
Experiment Computation error [%I 

Plate 347.7 295.6 15.0 
Front 391.4 307.1 21.5 
Top 307.2 269.7 12.2 
Back 270.9 178.9 34.0 

RESULTS AND DISCUSSION 

Figure 3 shows the typical overview of the heat 
transfer enhancement in the serpentine channels. For 
illustration, the heat transfer enhancement ratio 
(Nu/Nu,) is defined so that the average Nusselt num- 
ber for the considered geometry in the periodically 
fully developed condition is normalized with respect 
to the Nusselt number for a straight channel in the 
fully developed condition. The average Nusselt num- 
ber (Nu,) in a straight channel was calculated using 
Dittus Boelter equation [ 161. 

The heat transfer enhancement trends are almost 
the same regardless of the Reynolds and Prandtl num- 
bers. The heat transfer enhancement ratio has a peak 
with respect to GR while it monotonically decreases 
with RR. The maximum enhancement ratio is found 
in the channel with GR = 1 and the smallest value of 
RR (RR = 0.25 in the present study) for all cases. The 
minimum enhancement ratio is found in the channel 
with the smallest value of CR (CR = 0.5 in the present 
study) and largest value of RR (RR = 2 in the present 
study). Since the channel with GR = 0 corresponds to 
a straight channel, its heat transfer enhancement ratio 
becomes unity. It is obvious that the minimum 
enhancement ratio is found in the channel with the 
smallest value of GR (close to zero). 

Figure 4 shows that heat transfer is more sensitive 
to the Reynolds number in the high Prandtl number 
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1.76 

0.26 0 

Fig. 3. Overview of heat transfer enhancement at Re = 60 000 and Pr = 7.0 (maximum enhancement ratio : 
4.41 at GR = 1 and RR = 0.25) (minimum enhancement ratio: 2.28 at GR = 7 and RR = 1.5). 

fluid. The enhancement ratio curve at Pr = 7.0 has a 
steeper slope than the one at Pr = 0.7. For this reason, 
even though the enhancement ratio at Pr = 7.0 is 
lower than the one at Pr = 0.7 at the low Reynolds 
number (Re = 18 460), it outgrows the enhancement 
ratio at Pr = 0.7 as Re increases. This phenomenon is 
also seen in the laminar flow regime (Choi and Anand 
[9]). However, there is a slight difference between the 
heat transfer enhancement in the laminar flow regime 
and the turbulent flow regime. In the laminar flow 
regime, the Nusselt number in a straight channel or 
pipe is constant regardless of Re and Pr in the fully 
developed condition. Consequently, the small values 
of slope of the enhancement ratio curve causes very 
little increase in the absolute value of the Nusselt 
number with Rcs. However, in the turbulent flow 
regime, since the .Nusselt number in a straight channel 
or pipe is a function of Re and Pr, the absolute value of 
the average Nusselt number in the serpentine channel 
continues to increase with Re even though the slope 
of the enhancement ratio is small. The absolute values 
of the average Nusselt numbers in the other channels 
are available in Choi [12]. In addition, the effect of 
thermal boundary condition on local Nusselt number 
distribution was aexamined. As expected for turbulent 
flow the heating condition (uniform wall tem- 
perature/uniform heat flux) had no impact on the 
local Nusselt number. Details are reported elsewhere 
[121. 

Figure 5 shows that the maximum enhancement 

ratio is found in the channel with a higher value of 
CR as RR increases. The maximum enhancement is 
found in the channel with CR = 1 when RR has the 
smallest value (RR = 0.25) and in the channel with 
CR = 1.5 when RR has the highest value (RR = 2). 
Graphically, the curve for CR = 1 is positioned below 
that for CR = 1.5. The enhancement ratio in the chan- 
nel with the high value of CR (CR = 7) does not 
change much with RR. 

To examine which wall is more effective from a heat 
transfer point of view, the average Nusselt number 
(KU) for the upper wall is normalized with respect to 
the average Nusselt number (NuJ for the lower wall 
in Fig. 6. The straight line parallel to the abscissa 
means that the average Nusselt number ratio is unity 
and both walls have the same heat transfer coefficients. 
Normally the upper wall is more effective in heat 
transfer than the lower wall even though the average 
Nusselt number ratio becomes smaller and 
approaches unity as RR increases [Fig. 6(a)]. 
However, as can be seen in Fig. 6(b), the lower wall 
becomes more effective than the upper wall in some 
channels. This phenomenon occurs in channels with 
CR = 1-2 when RR > 1.5. 

Based on numerical simulation, the absolute value 
of the friction factor was found to be a weak function 
of the Reynolds number in the range considered 
(Re = 18 46&60 000). This fact agrees with the experi- 
mental result [12]. However, since the friction factor 
in a straight channel is a function of the Reynolds 
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25,000 35,000 

Re 

(b) 

t 
RR=0.25,Pr=7.0 

-e- GR=7 - E 
+ OR=3 

--6- OR-l.5 
+ OR = 1.25 

- OR=1 

- GRzO.5 

1 (1111111(‘1111((111’111)(1111’1*1111((1’1(.) 

15,000 25,000 35,000 45,000 55,000 

Re 

Fig. 4. Variation of heat transfer enhancement ratio with Re at RR = 0.25 : (a) Pr = 0.7, (b) Pr = 7.0. 

number [17], the ratio of the friction factor in the 
considered channel to that of a straight channel 
becomes a function of the Reynolds number. 

As seen in Fig. 3 and ref. [12], the distributions of 
the average Nusselt number ratio and the friction 
factor ratio have non-monotonic variation with GR 
while they monotonically decrease with RR. For this 
reason it is difficult to develop a unique correlation to 
cover all the geometrical parameters (GR and RR). 
Alternatively, one correlation is suggested for each 
GR value. 

Both the average Nusselt number and friction factor 

ratios are correlated with the Reynolds number and 
the geometrical parameter RR by 

- 
iVU/NU, or f/f0 = c Re” RRb (17) 

where n, b, and c are constant coefficients for a speci- 
fied GR. The numerical values of these coefficients are 
listed in Tables 5-7. It should be noticed that the value 
for f, is from the Beavers et al. correlation [ 171. 

The abbreviation SEE in Tables 5-7 stands for the 
standard error of estimate. It is a measure of the 
scatter of real data about the regression line and its 
properties are analogous to those of the standard devi- 
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Nu 0 

2 

1 
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

RR 

Fig. 5. Variation of heat transfer enhancement ratio with RR at Re = 60000 and Pr = 0.7. 

ation. Usually a small value of SEE indicates that 
most of the data are clustered near the regression line 
or that the regression line predicts the real data well. 
The standard error of estimate is an absolute and not 
a relative value. SEE will be big if the data are very 
large numbers although the correlation predicts the 
data very accurately. For this reason, the mean value 
in each series of channels (each specified GR) is 
included in the table. For example, even though the 
SEE (= 3.3355) of the friction factor correlation at 
GR = 1 is larger than the SEE (= 1.2123) at GR = 7 
in Table 7, the friction factor correlation at GR = 1 is 
more accurate than the one at GR = 7 since the former 
has the much larger mean value than the latter. 

The coefficient ‘a’ in equation (17) is a barometer 
indicating how much the Reynolds number change 
influences the average Nusselt number ratio or the 
friction factor ratio, and the coefficient ‘b’ in equation 
(17) is a counterpart for the geometrical parameter 
RR. In both cases, the absolute values are important 
and the negative sign means that it has an inverse 
effect. All the coefficients ‘a’ in Table 6 are higher than 
the ones in Table 5. This implies that the average 
Nusselt number ratio is more sensitive to the Reynolds 
number for high Prandtl number fluid than for low 
Prandtl number fluid. The coefficients ‘b’ for lower 
values of GR are higher than the ones for higher values 
of GR in Tables 5-7. This implies that the average 
Nusselt number ratio or the friction factor ratio in the 
channel with a lomwer value of GR is more sensitive to 
the change in RR than in the channel with a higher 
value of GR. The above facts were shown in Figs. 4 
and 5. 

CONCLUSIONS 

With the experimentally validated numerical model, 
the heat transfer and flow characteristics of a ser- 
pentine channel were investigated and their optimum 
conditions were numerically explored by the para- 
metric study. The considered ranges of the parameters 
are Re = 18 46(MO 000, Pr = 0.7 and 7.0, GR = 0.5- 
7 and RR = 0.25-2. The average Nusselt number and 
friction factor in the serpentine channel were nor- 
malized with respect to the ones corresponding to a 
fully developed condition in straight channels. From 
the numerical study, the following conclusions are 
drawn : 

(1) 

(2) 

(3) 

Significant heat transfer enhancement is 
obtained in both low and high Prandtl number 
fluids. The maximum enhancement ratio is 4.41 
and found in the channel with GR = 1 and the 
lowest value of RR (RR = 0.25) at Re = 60 000 
and Pr = 7.0. 

Heat transfer is more sensitive to the Reynolds 
number for high Prandtl number fluid 
(Pr = 7.0) than for low Prandtl number fluid 
(Pr = 0.7). Consequently, the heat transfer 
enhancement ratio is larger for the high Prandtl 
number fluid compared to that for the low 
Prandtl number fluid at high Reynolds number 
(Re = 60000). It is the opposite at low Reyn- 
olds number (Re = 18 460). 
The maximum heat transfer enhancement is 
found in the channel with GR = 1 when RR 
value is low while it is found in the channel with 
GR = 1.5 when RR value is large. The trends 
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Fig. 6. Average Nusselt number ratio between upper and lower walls: (a) GR = 0.5 and Pr = 0.7, (b) 

GR = 1 and Pr= 0.7. 

of the friction factor ratio [12] is the same as (5) The heat transfer enhancement ratio and the 
the heat transfer enhancement ratio. friction factor [12] ratio decrease mono- 

(4) The absolute value of the friction factor in the tonically with an increase in RR while they have 
serpentine channel does not vary much in the non-monotonic variation with respect to GR. 
range of Reynolds numbers considered but the For this reason correlation equations were 
friction factor ratio increases with Re [ 121. developed for each value of GR. 
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Table 5. Coefficients of correlation equation (17) for z/Nu, at 
Pr = 0.7 

GR C a b Mean SEE 

0.5 2.0266 0.0205 1 -0.1641 2.6177 0.02547 
1 2.2055 0.03678 -0.1471 3.3508 0.03072 
1.25 2.2295 0.03767 -0.1196 3.3930 0.03203 
1.5 2.2041 0.03820 -0.1005 3.3564 0.03208 
3 2.0997 0.03074 - 0.0640 2.9321 0.03427 
7 2.1546 0.00605 -0.0526 2.3207 0.04049 

Table 6. Coefficients of correlation equation (17) for Nu/Nu, at 
Pr = 7.0 

GR c a b Mean SEE 

0.5 0.33494 0.18740 -0.1973 2.4867 0.01527 
1 0.52193 0.17289 -0.1687 3.3010 0.03535 
1.25 0.55349 0.16949 -0.1356 3.3469 0.03804 
1.5 0.56404 0.16692 -0.1151 3.3024 0.03883 
3 0.46989 0.17012 -0.0740 2.8155 0.04014 
7 0.37286 0.16685 -0.0596 2.1520 0.04459 

Table 7. Coefficients of correlation equation (17) forf/fO 

GR c a b Mean SEE 

0.5 1.1001 0.32752 -0.6969 44.543 0.7383 
1 2.8504 0.30053 -0.5464 80.193 3.3355 
1.25 2.6668 0.30801 - 0.4400 77.010 3.6381 
1.5 2.4189 0.31167 -0.3667 70.280 3.5148 
3 1.3756 0.31263 -0.2156 38.166 1.9683 
7 0.7223 0.29599 -0.1691 16.615 1.2123 

(6) The upper wall is normally more effective from 
the heat transfer point of view. However, the 
lower wall transfers heat more effectively for 
the channel with GR = l-2 when RR is greater 
than 1.5. 
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